Pages

Monday, October 20, 2014

Kronologi Perkembangan Bumi

“Hai guys,..... geografi kelas x .blogspot.com kali ini akan membahas tentang Kronologi Perkembangan Bumi. Postingan  ini diharapkan dapat membantu kalian semua dalam menjelaskan sejarah dan teori pembentukan dan perkembangan muka bumi serta dapat mendeskripsikan karakteristik lapisan bumi.

Adanya desakan magma cair dari perut bumi menurut para pakar geologi dapat menimbulkan terjadinya pelebaran alur-alur dasar samudra, gerakan-gerakan benua, pola seismik dunia, dan pola kegiatan vulkanik.

Ada enam bentang  besar lempeng benua di bumi ini, keseluruhannya bersifat keras walaupun relatif tipis jika dibandingkan dengan keseluruhan bola bumi. Ketebalan lempeng-lempeng benua tersebut tidak lebih dari 150 km. Lempeng-lempeng benua itu saling bergeser. Gerakan-gerakan pergeseran kerak bumi ini juga di- sebabkan oleh desakan hebat dari energi yang dikeluarkan oleh perut bumi.

Di Benua Asia terdapat tiga lempeng benua yang besar, yaitu Lempeng Eurasia, Lempeng Pasifik, dan Lempeng India. Dua dari tiga lempeng tersebut relatif aktif bergerak, sedangkan yang satu statis. Lempeng Pasifik dan India terus menerus bergerak, menggeser ke arah barat laut (Pasifik) dan utara (India), sedangkan Lempeng Eurasia relatif statis dan me- rupakan lempeng terbesar dari ketiganya. Gerakan bertabrakan antarlempeng memunculkan jajaran kepulauan dan pegunungan seperti pegunungan di Pulau Jawa yang relatif sejajar dalam satu barisan.

Hal-hal yang perlu diketahui tentang teori tektonik lempeng adalah sebagai berikut :
  1. Kulit bumi kita padat, dingin, dan terapung di atas lapisan mantel. Kerak bumi yang membentuk dasar samudra di sebut lempeng samudra, sedang kerak bumi yang membentuk benua disebut lempeng benua. Di bawah lapisan lempeng terdapat lapisan mantel berupa massa cair pijar yang sangat panas.
  2. Pemanasan yang terus-menerus pada lapisan inti bumi menyebabkan terjadinya arus konveksi pada lapisan mantel dan menumbuk kerak bumi yang terapung di atasnya sehingga lama-kelamaan bengkok, retak, dan menimbulkan patahan. Magma akan menerobos lempeng benua di atasnya melalui celah atau retakan atau patahan, dan terbentuklah gunung api. Gejala semacam ini disebut vulkanisme.
  3. Jika tumpukan energi di daerah penunjaman sangat besar, akan menggetarkan lempeng dan menimbulkan gempa. Terjadinya peristiwa tabrakan antar lempeng di sebut gejala tektoisme. (perhatikan peta lempeng-lempeng di bumi)
  4. Gerakan dasar batuan yang meleleh yang merupakan batuan muda akan mendesak bagian kerak bumi atau batuan kerak bumi yang berumur tua, dan bagian yang tua inilah yang menyangga benua- benua. Terjadinya gempa disebabkan pertemuan dua ujung dari penyangga benua akibat aktivitas di bawahnya. Benturan dua ujung tersebut menimbulkan gempa bumi. Inilah yang terjadi di dalam laut di lepas pantai Amerika Selatan. Satu bagian bumi didorong masuk ke selubung untuk meleleh kembali, bagian lainnya didorong ke atas sehingga membentuk pematang.
  5. Teori tektonik lempeng berhubungan erat dengan fenomena persebaran gunung api di muka bumi dan lokasi serta persebaran gempa bumi.

Teori-Teori Tentang Gerakan Benua Yang Disampaikan Oleh Beberapa Ahli

a. Alfred Lothar Wegener

teori benua Alfred
Teori Apungan dan Pergeseran Benua ditemukan oleh A.L. Wegener (1880– 1930). Ia menyampaikan teori ini pada tahun 1912 di hadapan perhimpunan ahli geologi di Frankfurt, Jerman. Kemudian teori ini dibukukan pada tahun 1915 dengan judul Die Enstehung der Kontinente und Ozeane yang berarti Asal Usul Benua dan Lautan. Walaupun pada awalnya buku tersebut menimbulkan kontroversi besar di lingkungan ahli-ahli geologi, pada sekitar tahun 1960 “Teori Apungan Benua” Wegener semakin banyak mendapatkan dukungan dari para ahli di bidangnya.

Beberapa hal yang menjadi dasar teori A.L. Wegener adalah sebagai berikut :
  1. Garis pantai timur Benua Amerika Utara mempunyai persamaan dengan garis pantai barat Eropa.
  2. Benua Afrika mempunyai persamaan yang mencolok dengan Asia barat, yang menimbulkan persepsi bahwa kedua garis yang sama tersebut dahulunya merupakan daratan yang berimpitan. Itu juga dikuatkan dengan persamaan formasi geologi pada bagian pertemuan dari kedua daratan tersebut, terutama pada formasi geologi di sepanjang pantai Afrika Barat sama dengan apa yang terdapat di pantai Timur Amerika. Kondisi tersebut telah dapat dibuktikan kebenarannya saat ini.
  3. Benua-benua yang ada sekarang awalnya merupakan satu benua besar yang disebut Benua Pangea. Pecahnya Benua Pangea disebabkan oleh gerakan benua besar di selatan baik ke arah barat maupun ke utara menuju khatulistiwa. Wilayah Greenland sekarang ini bergerak menjauhi daratan Eropa dengan kecepatan 36 meter/tahun, demikian juga Kepulauan Madagaskar menjauhi Afrika Selatan dengan kecepatan 9 meter/tahun.


Peristiwa-peristiwa di atas akan menimbulkan hal-hal sebagai berikut :
  • Bentangan-bentangan samudra dan benua-benua mengapung sendiri- sendiri.
  • Karena gerakan Benua Amerika yang terus berlangsung ke arah barat, Samudra Atlantik menjadi semakin luas. Terjadinya lipatan-lipatan kulit bumi yang menghasilkan jajaran pegunungan utara-selatan di sepanjang pantai Amerika Utara Selatan.
  • Besarnya intensitas kegiatan seismik yang terjadi di sepanjang patahan San Andreas, di sekitar pantai barat Amerika Serikat.
  • Samudra Hindia semakin mendesak ke utara, sedangkan anak Benua India akan semakin menyempit dan mendekati Benua Eurasia, sehingga menimbulkan Pegunungan Himalaya.

Semakin lebar celah yang terdapat di dasar alur-alur samudra merupakan salah satu bukti bahwa benua-benua tersebut selalu mengalami pergerakan dan pergeseran secara terus-menerus.

b. Rene Descartes

Menurut Rene Descartes (1596–1650), bumi ini berangsur-angsur mengalami penyusutan dan pengerutan karena pendinginan sehingga terjadilah gunung-gunung dan lembah-lembah. Teori ini lebih terkenal dengan sebutan teori kontraksi yang kemudian diteruskan oleh Edward Suess. Namun, teori ini tidak mendapat dukungan para ahli geologi.

c. Edward Suess

Edward Suess (1831–1914), yang meneruskan teori Wagener, menyatakan bahwa persamaan geologi yang terdapat di Amerika Selatan, India, Australia, dan Antartika karena pada awalnya daratan-daratan tersebut satu, yang disebut Benua Pangea, kemudian pecah menjadi dua, Benua Laurasia dan Benua Gondwana, dan berevolusi menjadi benua-benua seperti saat ini. Daratan yang berupa benua-benua sekarang ini merupakan sisa-sisa dari bagian daratan lain yang tenggelam ke dasar samudra.

180 juta tahun lalu Benua Pangea terpisah menjadi dua benua. Di bagian utara, Gondwana, mulai terpecah menjadi India dan Antartika-Australia mulai terpisah. Retakan mulai muncul antara Amerika Selatan dan Afrika. Di bagian timur, Afrika tertutup oleh Laut Tethys.

130 juta tahun lalu Benua Gondwana dan Laurasia mulai mengapung ke utara, tetapi Atlantik Utara dan Samudra Hindia mulai melebar. Retakan Atlantik Selatan memanjang, tegak lurusnya muncul retakan yang nantinya akan memisahkan Greenland dari Amerika Utara. India mulai bergerak ke Asia.


65 juta tahun lalu Amerika Selatan terpisah seutuhnya dari Afrika, berpindah ke utara dan barat. Madagaskar terpecah dari Afrika, tetapi belum ada tanda retakan Laut Merah akan memisahkan Afrika dari semenanjung Arab. Laut Mediterania mulai tampak. Di selatan, Australia masih bergabung dengan Antartika.


Saat ini India bergerak ke utara dan bertemu dengan Asia, menggumpalkan sedimen yang membentuk gugusan pegunungan Himalaya. Amerika Selatan berputar dan bergerak ke barat bergabung dengan Amerika Utara. Australia terpisah dengan Antartika.



d. Tim Ahli Amerika

Tim peneliti yang berjumlah 17 orang ahli berkebangsaan Amerika Serikat mengadakan penelitian di Kutub Selatan antara tahun 1969–1970. Mereka berhasil membuktikan bahwa daerah itu terletak di daerah dekat khatulistiwa pada 200 juta tahun yang lalu, dan seharusnya pada zaman tersebut di daerah itu terdapat binatang dan tumbuh-tumbuhan. Pada tahun 1969, ditemukan fosil tulang rahang binatang amfibi air tawar purba, yang disebut labyrintodont. Binatang itu seperti Salamander, kepalanya gepeng dan badannya besar dan berat. Fosil seperti itu ditemui pula di Amerika Selatan dan Afrika, yang secara geologi struktur lapisan batuannya juga sama.

Sumber :

Sulistyanto, Iwan Gatot. 2009. Geografi 1 : Untuk Sekolah Menengah Atas/ Madrasah Aliyah Kelas X. Jakarta: Pusat Perbukuan, Departemen Pendidikan Nasional

Gambaran Karakteristik Perlapisan Bumi

“Hai guys,..... geografi kelas x .blogspot.com kali ini akan membahas tentang Gambaran Karakteristik Perlapisan Bumi. Postingan  ini diharapkan dapat membantu kalian semua dalam menjelaskan sejarah dan teori pembentukan dan perkembangan muka bumi serta dapat mendeskripsikan karakteristik lapisan bumi.

Litosfer merupakan bagian paling atas dari kerak bumi dan merupakan bagian lapisan kerak bumi yang relatif tipis. Lapisan ini dapat diper- umpamakan lapisan kulit ari pada manusia.

Litosfer bumi kita terbagi atas sekitar 12 lempeng. Lempeng-lempeng tersebut masing-masing mempunyai gerakan pergeseran yang mendatar. Karena arah geser yang tidak sama, terdapat tiga macam kecenderungan batas pertemuan antara lempeng-lempeng itu, yaitu dua lempeng saling menjauh, dua lempeng saling bertumbukan, dan dua lempeng saling berpapasan.

a. Dua Lempeng Saling Menjauh

Menurut Teori Lempeng Tektonik, lapisan terluar bumi kita terbuat dari suatu lempeng tipis dan keras yang masing-masing saling bergerak relatif terhadap yang lain. Gerakan ini terjadi terus-menerus sejak bumi ini tercipta hingga sekarang. Teori Lempeng Tektonik muncul sejak tahun 1960-an, dan hingga kini teori ini telah berhasil menjelaskan berbagai peristiwa geologis, seperti gempa bumi, tsunami, dan meletusnya gunung berapi, juga tentang bagaimana terbentuknya gunung, benua, samudra, dan relief muka bumi. 


Lempeng tektonik terbentuk oleh kerak benua (continental crust) ataupun kerak samudra (oceanic crust), dan lapisan batuan teratas dari mantel bumi (earth’s mantle). Kerak benua dan kerak samudra beserta lapisan teratas mantel ini dinamakan litosfer. Kepadatan material pada kerak samudra lebih tinggi dibanding kepadatan kerak benua. Demikian pula, elemen-elemen zat pada kerak samudra (mafik) lebih berat dibanding elemen-elemen pada kerak benua (felsik).

Di bawah litosfer terdapat lapisan batuan cair yang dinamakan astenosfer. Karena suhu dan tekanan di lapisan astenosfer ini sangat tinggi, batu-batuan di lapisan ini bergerak mengalir seperti cairan (fluid), sehingga kerak bumi terpecah menjadi beberapa lempeng.

Pada bagian tertentu lempeng benua menunjam ke bawah lempeng benua lainnya. Karena keduanya adalah lempeng benua, materialnya tidak terlalu padat dan tidak cukup berat untuk tenggelam masuk ke astenosfer dan meleleh. Wilayah di bagian yang bertubrukan mengeras dan menebal, dan membentuk deretan pegunungan non vulkanik (mountain range).

Fenomena yang terjadi jika dua lempeng saling menjauh adalah sebagai berikut :
  • pembentukan tanggul dasar samudra di sepanjang tempat perenggangan antar lempeng;
  • perenggangan lempeng akan disertai pertumbukan kedua tepi lempeng tersebut dengan lempeng di sisi luarnya;
  • terjadinya aktivitas vulkanisme laut dalam yang menghasilkan lava basa berstruktur bantal dan hamparan lelehan lava yang encer;
  • munculnya aktivitas gempa di dasar laut dan sekitarnya.

Tanggul dasar laut terjadi akibat proses vulkanisme yang bertumpuk sepanjang celah. Sebagai contoh yang terdapat di Lautan Atlantik, memanjang dari kutub utara sampai mendekati kutub selatan. Celah ini menjadikan Benua Amerika bergerak saling menjauh dengan Benua Afrika dan Benua Eropa.
Gambar tabrakan antar lempeng bumi

b. Dua Lempeng Saling Bertemu

Fenomena yang terjadi jika dua lempeng saling bertemu adalah sebagai beriku t:
  • lempeng dasar samudra menunjam ke bawah lempeng benua;
  • merupakan daerah hiposentra gempa dangkal dan gempa dalam;
  • terjadinya aktivitas vulkanisme, intrusi, dan ekstrusi;
  • terbentuk palung laut di tempat tumbukan itu terjadi;
  • pembengkakan tepi lempeng benua yang merupakan tempat munculnya deretan pegunungan;
  • timbunan sedimen campuran yang dalam istilah geologi disebut batuan bancuh atau melange;
  • penghancuran lempeng akibat pergesekan lempeng.

Menunjamnya lempeng dasar samudra disebabkan oleh desakan lempeng benua yang lebih tebal dan keras, dan di tempat inilah terbentuk palung laut, yaitu dasar laut yang dalam dan memanjang. Dampak dari pergerakan lempeng terhadap wilayah Indonesia, membuat wilayah Indonesia rawan akan gempa bumi.

Indonesia terdapat pertemuan tiga lempeng, yaitu lempeng Pasifik, lempeng Eurasia, dan lempeng Indo-Australia. Jenis batas antara kedua lempeng ini adalah konvergen. Lempeng Indo-Australia adalah lempeng yang menunjam ke bawah lempeng Eurasia. Selain itu, di bagian timur, bertemu tiga lempeng tektonik sekaligus, yaitu lempeng Filipina, Pasifik, dan Indo-Australia.

Adanya pergerakan subduksi antara dua lempeng menyebabkan terbentuknya deretan gunung berapi dan parit samudra. Demikian pula subduksi antara lempeng Indo-Australia dan lempeng Eurasia menyebabkan terbentuknya deretan gunung berapi yang tak lain adalah Bukit Barisan di Pulau Sumatra dan deretan gunung berapi di sepanjang pulau Jawa, Bali, dan Lombok, serta parit samudra yang tak lain adalah Parit Jawa (Sunda).

Lempeng tektonik terus bergerak. Suatu saat gerakannya mengalami gesekan atau benturan yang cukup keras. Jika ini terjadi, timbullah gempa dan tsunami, dan meningkatnya kenaikan magma ke permukaan. Jadi, tidak heran jika terjadi gempa yang bersumber dari dasar Samudra Hindia, yang sering kali diikuti dengan tsunami, aktivitas gunung berapi di sepanjang Pulau Sumatra dan Jawa juga turut meningkat. Sebagai contoh adalah Palung Jawa yang merupakan tempat pertemuan antara lempeng Benua Asia dan lempeng dasar Samudra Hindia. Begitu juga dengan palung Laut Jepang, Palung Guam, dan Palung Mindanau (Palung Mariana) Samudra Pasifik di Filipina, semuanya merupakan tempat lempeng dasar Samudra Pasifik menunjam ke bawah lempeng Benua Asia. Munculnya deretan Pulau Sumatra, Pulau Jawa, Kepulauan Nusa Tenggara, dan Pulau Timor adalah akibat dari pembentukan lempeng benua. Di sepanjang pegunungan dan pulau-pulau itu bermunculan puncak gunung api, lipatan, dan retakan.

Gambar lempeng indo-australia

c. Dua Lempeng Saling Berpapasan

Fenomena yang terjadi jika dua lempeng saling berpapasan dan terjadi pergeseran mendatar adalah sebagai berikut :
  1. terdapat aktivitas vulkanisme yang lemah disertai gempa yang tidak kuat;
  2. gejala pergeseran tampak pada tanggul dasar samudra yang tidak berkesinambungan dan terputus-putus. Tanggul dasar samudra di bagian tengah Samudra Atlantik ternyata terputus-putus sebagai akibat dari pergeseran mendatar itu.


Lipatan Bumi
Lipatan bagian lembah yang turun dinamakan sinklin dan yang puncak terangkat dinamakan antiklin. Sebuah antiklin dapat menjadi puncak pegunungan yang berderet memanjang setelah mengalami pengikisan, sedangkan sebuah antiklin dapat pula menjadi lembah dan sinklin berubah menjadi puncak pegunungan.

Bentukan patahan pada lapisan kulit bumi disebabkan oleh rapuhnya lapisan kulit bumi akibat gerakan tenaga endogen. Tenaga endogen menyebabkan terjadinya pergeseran pada bidang patahan. Patahan ada yang berbentuk vertikal, horizontal miring, dan block mountain. Bentuk-bentuk patahan sangat tergantung pada arah tenaga penyebabnya. Penyebab patahan dapat berupa tarikan, artinya dua tenaga yang saling menjauh, atau mungkin juga berupa tekanan, artinya dua tenaga yang saling menekan (mendekat) untuk diretakkan.

Patahan Bumi
Di Indonesia patahan yang terkenal terdapat di Pulau Sumatra, yaitu patahan Semangko dan Ngarai Sianok di sepanjang Bukit Barisan. Di dunia patahan paling besar terdapat di Afrika, yaitu di Sungai Zambesi yang mengalir ke Danau Nyasa dan Danau Rudolf.



Sumber :

Sulistyanto, Iwan Gatot. 2009. Geografi 1 : Untuk Sekolah Menengah Atas/ Madrasah Aliyah Kelas X. Jakarta: Pusat Perbukuan, Departemen Pendidikan Nasional

Persebaran Gunung Berapi dan Gempa Bumi dalam Hubungannya dengan Teori Lempeng Tektonik

“Hai guys,..... geografi kelas x .blogspot.com kali ini akan membahas tentang Persebaran Gunung Berapi dan Gempa Bumi dalam Hubungannya dengan Teori Lempeng Tektonik. Postingan  ini diharapkan dapat membantu kalian semua dalam menjelaskan sejarah dan teori pembentukan dan perkembangan muka bumi serta dapat mendeskripsikan karakteristik lapisan bumi.

Kerak bumi terbagi menjadi lempengan-lempengan, yang terdiri atas lempengan benua yang besar dan yang kecil. Lempengan-lempengan tersebut bergerak perlahan-lahan ke arah permukaan bumi, dan di antara lempengan-lempengan tersebut terdapat retakan-retakan besar di kerak bumi. Lempengan-lempengan tersebut ada yang bergerak saling menjauh dan ada pula yang bergerak saling mendekat dan saling bertabrakan.

Pada wilayah dengan kondisi lempengan yang saling menjauh, timbul bahan lelehan dari dalam bumi melalui retakan-retakan, kemudian menjadi dingin dan membentuk batuan yang disebut basal yang terjadi jauh di bawah lautan. Timbulnya basal akan membentuk deretan pematang bawah samudra yang biasa disebut pematang tengah samudra.

Pegunungan Himalaya terbentuk oleh penunjaman akibat tabrakan antara Lempengan India-Australia yang didorong ke bawah oleh Lempengan Eurasia, yang menimbulkan  busur gunung api di Indonesia, parit Sunda dan Jawa serta tanah tinggi Nugini, demikian juga Australia bagian utara yang telah didorong ke arah bawah yang kemudian membentuk Teluk Carpentaria dan Laut Timor serta Laut Arafuru.


Gambar lempeng bumi

Busur gunung-gunung api Indonesia terbentuk karena ketika pinggiran lempengan India-Australia bertabrakan dengan lempengan Eurasia, lempengan tersebut longsor jauh ke dalam bumi, dan temperatur yang sangat tinggi telah melelehkan pinggiran lempengan sehingga menghasilkan magma. Magma ini kemudian muncul melalui retakan-retakan di banyak tempat pada permukaan bumi yang membentuk jajaran gunung api. Gunung-gunung api yang terbentuk dengan cara ini disebut gunung api andesit. Gunung api andesit bersifat mudah meledak dan tak terduga, dan lava yang dikeluarkan membentuk batuan andesit.

Terdapat 80 buah gunung berapi yang masih aktif dari 400 gunung berapi yang ada di Indonesia. Gunung berapi tersebut terbagi menjadi tiga barisan, yaitu:
Sumatra – Jawa – Nusa Tenggara – Laut Banda;
Halmahera dan pulau-pulau di sebelah baratnya;
Sulawesi Utara – Sangihe – Mindanao.

Berikut uraian tentang tiga sistem pokok penyebaran pegunungan yang bertemu di Indonesia.

1. Sistem Sunda
Sistem Sunda dimulai dari Arakan Yoma di Myanmar, sampai ke Kepulauan Banda di Maluku. Panjangnya ± 7.000 km.
Sistem Sunda terdiri atas dua busur, yaitu: busur dalam yang vulkanis dan busur luar yang tidak vulkanis, yang terletak di bawah permukaan laut.


Gambar busur vulkanis

2. Sistem Busur Tepi Asia
Sistem Busur Tepi Asia dimulai dari Kamsyatku melalui Jepang, Filipina, Kalimantan, dan Sulawesi. Setelah sampai Filipina, Busur Tepi Asia terbagi menjadi tiga cabang, yaitu:
Cabang pertama dimulai dari Pulau Luzon melewati Pulau Palawan dan Kalimantan Utara.
Cabang kedua dimulai dari Pulau Luzon melewati Pulau Samar, Mindanau, dan Kalimantan Utara.
Cabang ketiga dimulai dari Pulau Samar, Mindanau, Sangihe, dan Sulawesi.

3. Sistem Sirkum Australia
Sistem Sirkum Australia dimulai dari Selandia Baru melalui Kaledonia Baru ke Irian.

Ketiga sistem pegunungan tersebut bertemu di sekitar Kepulauan Sulu dan Banggai. Indonesia juga merupakan daerah pertemuan rangkaian Sirkum Mediterania dan rangkaian Sirkum Pasifik, dengan proses pembentukan pegunungan yang masih berlangsung sampai saat ini. Hal inilah yang menyebabkan di Indonesia banyak terjadi gempa bumi.

Pusat gempa di dalam bumi disebut hiposentrum, sedangkan gempa di permukaan bumi di atas hiposentrum disebut episentrum. Daerah di sekitar episentrum merupakan daerah paling besar kerusakannya. Episentrum di Indonesia kebanyakan terdapat di bawah permukaan laut sehingga kerusakan yang terjadi di daratan tidak begitu besar, tetapi bahaya yang lebih besar disebabkan oleh terjadinya tsunami akibat episentrum di tengah laut. Gempa bumi dapat dipetakan berdasarkan pusat gempa dan skala gempanya, tetapi tidak dapat diperkirakan kapan gempa bumi akan terjadi.

Berikut beberapa macam garis pada peta gempa:
Homoseista, adalah garis yang menghubungkan tempat-tempat yang dilalui gempa pada waktu yang sama.
Isoseista, adalah garis yang menghubungkan tempat-tempat yang dilalui oleh gempa dengan intensitas yang sama.
Pleistoseista, adalah garis yang mengelilingi daerah yang mengalami kerusakan terhebat akibat gempa bumi. Pleistoseista ini mengelilingi episentrum karena kerusakan yang terhebat di sekitar episentrum. Isoseista yang pertama juga merupakan pleistoseista.

Gempa bumi itu merambat melalui tiga macam getaran, sebagai berikut.

a. Getaran longitudinal (merapat-merenggang)
Getaran berasal dari hiposentrum dan bergerak melalui dalam bumi dengan kecepatan tinggi, yaitu 7–14 km per jam. Getaran ini terjadi paling awal dan merupakan getaran pendahuluan yang pertama sehingga disebut getaran primer (P). Getaran ini belum menimbulkan kerusakan.

b. Getaran transversal (naik turun)
Getaran transversal atau naik turun berasal dari hiposentrum dan juga bergerak melalui dalam bumi dengan kecepatan antara 4–7 km per jam. Getaran ini datang setelah getaran longitudinal dan merupakan getaran pendahuluan kedua sehingga disebut getaran sekunder (S). Getaran ini juga belum menimbulkan kerusakan.

c. Getaran gelombang panjang
Getaran ini berasal dari episentrum dan bergerak melalui permukaan bumi dengan kecepatan antara 3,8–3,9 km per jam. Getaran ini datangnya paling akhir, tetapi merupakan getaran pokok yang sering menimbulkan kerusakan.

Ada dua macam gempa dilihat dari intensitasnya, yaitu:
makroseisme, yaitu gempa yang dapat diketahui tanpa alat karena intensitasnya yang besar;
mikroseisme, yaitu gempa yang hanya dapat diketahui dengan meng- gunakan alat karena intensitasnya yang kecil sekali.

Ada tiga macam gempa berdasarkan sebab terjadinya, yaitu sebagai berikut.

a. Gempa runtuhan (terban)

Gempa runtuhan terjadi karena turunnya atau runtuhnya tanah, dan biasa terjadi pada daerah tambang yang berbentuk terowongan, pegunungan kapur, atau lubang. Di dalam pegunungan kapur terdapat gua-gua dan ponor-ponor (luweng) yang terjadi proses karena pelarutan (solusional). Jika atap gua atau lubang itu gugur, timbullah gempa runtuhan meskipun bahaya yang ditimbulkan relatif kecil dan getaran hanya terjadi di sekitar lokasi runtuhan.

b. Gempa vulkanis

Gempa vulkanis terjadi karena pengaruh yang ditimbulkan oleh meletusnya gunung api. Jika gunung api akan meletus, timbullah tekanan gas dari dalam sumbat kawahnya yang menyebabkan terjadinya getaran yang disebut gempa vulkanis. Gempa tersebut hanya terasa di sekitar daerah gunung api yang meletus sehingga bahaya gempa ini juga relatif kecil.

Contoh gempa vulkanis adalah gempa yang disebabkan oleh letusan Gunung Tambora. Gunung Tambora pada tahun 1815 meletus dengan dahsyat hingga menewaskan 92.000 orang. Karena kedahsyatannya tercatat dalam sejarah dunia. Kehebatan letusannya tercatat sekitar 6 juta kali kekuatan bom atom. Gunung ini memiliki garis tengah 60 km pada ketinggian permukaan air laut. Letusan yang mahadahsyat tersebut telah membentuk kawah dengan lebar sekitar 6 km, dan kedalaman 1.110 meter, menyebarkan sekitar 150 km3 debu hingga mencapai jarak sejauh 1.300 km. Jawa Tengah dan Kalimantan dalam jarak sekitar 900 km dari tempat letusan, kejatuhan debu setebal 1 cm. Bongkahan letusan melayang hingga mencapai 44 km. Letusan Gunung Tambora mengakibatkan gempa vulkanik yang besar.

c. Gempa tektonik

Gempa tektonik terjadi karena gerak ortogenetik. Daerah yang sering kali mengalami gempa ini adalah daerah pegunungan lipatan muda, yaitu daerah Sirkum Mediterania dan rangkaian Sirkum Pasifik. Gempa ini sering mengakibatkan perpindahan tanah, sehingga gempa ini disebut gempa dislokasi. Bahaya gempa ini relatif besar karena tanah dapat terjadi pelipatan atau bergeser.

Daerah-daerah yang rawan gempa bumi disebabkan oleh kondisi labil dari suatu daerah karena daerah tersebut dilalui oleh jalur pertemuan lempeng. Daerah itu, antara lain:
Balkan, Iran, India, dan Indonesia yang merupakan Rangkaian Sirkum Mediterania;
Jepang, Filipina, Cile, dan Amerika Tengah yang merupakan Rangkaian Sirkum Pasifik.


perbandingan skala mercalli dan richter

Sumber :

Sulistyanto, Iwan Gatot. 2009. Geografi 1 : Untuk Sekolah Menengah Atas/ Madrasah Aliyah Kelas X. Jakarta: Pusat Perbukuan, Departemen Pendidikan Nasional

Saturday, October 12, 2013

Planet dalam tata surya kita


Planet merupakan benda angkasa yang tidak memiliki cahaya sendiri, berbrntuk bulatan dan beredar mengelilingi matahari. Sebagian besar planet memiliki pengiring atau pengikut planet disebut satelit yang beredar mengelilingi planet.

Planet-planet yang ada di tata surya dapat diklasifikasikan berdasarkan beberapa kriteria, antara lain sebagai berikut:

A. Berdasarkan Massanya, planet dapat dikelompokan menjadi dua macam, yaitu sebagai berikut:
  • Planet Bermassa Besar (Superior Planet), terdiri dari: Jupiter, Saturnus, Uranus, dan Neptunus.
  • Planet Bermassa Kecil (Inferior Planet), terdiri dari: Merkurius, Venus, Bumi, dan Mars.
B. Berdasarkan Jaraknya ke Matahari, planet dapat dibedakan atas dua macam planet, yaitu sebagai berikut:

  • Planet Dalam (Interior Planet) Planet dalam yaitu planet-planet  yang jarak rata-ratanya ke matahari lebih pendek daripada jarak rata-rata planet bumi ke matahari.  Berdasarkan kriteria tersebut, maka yang termasuk Planet Dalam adalah Planet Merkurius dan Venus. Planet Merkurius dan Venus mempunyai kecepatan beredar mengelilingi Matahari berbeda-beda, sehingga letak atau kedudukan planet tersebut bila dilihat dari Bumi akan berubah-ubah pula. Sudut yang dibentuk oleh garis yang menghubungkan Bumi-Matahari dengan suatu Planet disebut Elongasi. Besarnya sudut Elongasi yang dibentuk oleh garis yang menghubungkan Bumi-Matahari-Merkurius yaitu antara 0 -28 derajat, sedangkan sudut Elongasi Bumi-matahari-Venus adalah 0 - 50 derajat.
  • Planet Luar (Eksterior Planet) Planet Luar yaitu Planet-Planet yang jarak rata-ratanya ke Matahari lebih panjang dari pada jarak rata-rata Planet Bumi ke Matahari. Termasuk ke dalam kelompok Planet Luar adalah Planet Mars, Jupiter, Saturnus, Uranus, dan Neptunus.
Dilihat dari Bumi, sudut Elongasi kelompok Planet Luar berkisar antara 0 -180 derajat.  Bila Elongasi salah satu Planet mencapai 180 derajat hal ini berarti Planet tersebut sedang berada dalam kedudukan oposisi, yaitu kedudukan suatu Planet berlawanan arah dengan posisi Matahari dilihat dari Bumi. Pada saat oposisi, berarti Planet tersebut berada pada jarak paling dekat dengan Bumi.

Bila Elongasi salah satu Planet mencapai 00 berarti Planet tersebut mencapai kedudukan konjungsi, yaitu suatu kedudukan Planet yang berada dalam posisi searah dengan Matahari dilihat dari Bumi. Pada saat konjungsi, berarti Planet tersebut berada pada jarak paling jauh dengan Bumi.

A. Planet Merkurius

Merkurius merupakan Planet paling dekat dengan Matahari, jarak rata-ratanya hanya sekitar 57,8 juta km. Akibatnya, suhu udara pada siang hari sangat panas (mencapai 4000C), sedangkan malam hari sangat dingin (mencapai -2000 C). Perbedaan suhu harian yang sangat besar disebabkan Planet ini tidak mempunyai atmosfer. Merkurius berukuran paling kecil, garis tengahnya hanya 4.850 km hampir sama dengan ukuran bulan (diameter 3.476 km). Planet ini beredar mengelilingi matahari dalam suatu orbit eliptis (lonjong) dengan periode revolusinya sekitar 88 hari, sedangkan periode rotasinya sekitar 59 hari.

Mirip dengan Bulan, Merkurius mempunyai banyak kawah dan juga tidak mempunyai satelit alami serta atmosfir. Merkurius mempunyai inti besi yang menciptakan sebuah medan magnet dengan kekuatan 0.1% dari kekuatan medan magnet bumi. Suhu permukaan dari Merkurius berkisar antara 90 sampai 700 Kelvin (-180 sampai 430 derajat Celcius).

Pengamatan tercatat dari Merkurius paling awal dimulai dari zaman orang Sumeria pada milenium ke tiga sebelum masehi. Bangsa Romawi menamakan planet ini dengan nama salah satu dari dewa mereka, Merkurius (dikenal juga sebagai Hermes pada mitologi Yunani dan Nabu pada mitologi Babilonia). Lambang astronomis untuk merkurius adalah abstraksi dari kepala Merkurius sang dewa dengan topi bersayap diatas caduceus. Orang Yunani pada zaman Hesiod menamai Merkurius Stilbon dan Hermaon karena sebelum abad ke lima sebelum masehi mereka mengira bahwa Merkurius itu adalah dua benda antariksa yang berbeda, yang satu hanya tampak pada saat matahari terbit dan yang satunya lagi hanya tampak pada saat matahari terbenam. Di India, Merkurius dinamai Budha (बुध), anak dari Candra sang bulan. Di budaya Tiongkok, Korea, Jepang dan Vietnam, Merkurius dinamakan "bintang air". Orang-orang Ibrani menamakannya Kokhav Hamah (כוכב חמה), "bintang dari yang panas" ("yang panas" maksudnya matahari). Diameter Merkurius 40% lebih kecil daripada Bumi (4879,4 km), dan 40% lebih besar daripada Bulan. Ukurannya juga lebih kecil (walaupun lebih padat) daripada bulan Jupiter, Ganymede dan bulan Saturnus, Titan.

B. Planet Venus
                            
Venus merupakan planet yang letaknya paling dekat ke bumi, yaitu sekitar 42 juta km, sehingga dapat terlihat jelas dari bumi sebagai suatu noktah kecil yang sangat terang dan berkilauan menyerupai bintang pada pagi atau senja hari. Venus sering disebut sebagai bintang kejora pada saat Planet Venus berada pada posisi elongasi barat dan bintang senja pada waktu elongasi timur. Kecemerlangan planet Venus disebabkan pula oleh adanya atmosfer berupa awan putih yang menyelubunginya dan berfungsi memantulkan cahaya matahari.

Jarak rata-rata Venus ke matahari sekitar 108 juta km, diselubungi atmosfer yang sangat tebal terdiri atas gas karbondioksida dan sulfat, sehingga pada siang hari suhunya dapat mencapai 4770 C, sedangkan pada malam hari suhunya tetap tinggi karena panas yang diterima tertahan atmosfer. Diameter planet Venus sekitar 12.140 km, periode rotasinya sekitar 244 hari dengan arah sesuai jarum jam, dan periode revolusinya sekitar 225 hari.

Atmosfer Venus mengandung 97% karbondioksida (CO2) dan 3% nitrogen, sehingga hampir tidak mungkin terdapat kehidupan. Arah rotasi Venus berlawanan dengan arah rotasi planet-planet lain. Selain itu, jangka waktu rotasi Venus lebih lama daripada jangka waktu revolusinya dalam mengelilingi matahari. Kandungan atmosfernya yang pekat dengan CO2 menyebabkan suhu permukaannya sangat tinggi akibat efek rumah kaca. Atmosfer Venus tebal dan selalu diselubungi oleh awan. Pakar astrobiologi berspekulasi bahwa pada lapisan awan Venus termobakteri tertentu masih dapat melangsungkan kehidupan. 

C. Planet Bumi (The Earth)

Bumi merupakan planet yang berada pada urutan ketiga dari matahari. Jarak rata-ratanya ke matahari sekitar 150 juta km, periode revolusinya sekitar 365,25 hari, dan periode rotasinya sekitar 23 jam 56 menit dengan arah barat-timur. Planet bumi mempunyai satu satelit alam yang selalu beredar mengelilingi bumi yaitu Bulan (The Moon). Diameter Bumi sekitar 12.756 km hampir sama dengan diameter Planet Venus.

Lapisan ozon, setinggi 50 kilometer, berada di lapisan stratosfer dan mesosfer dan melindungi bumi dari sinar ultraungu. Perbedaan suhu permukaan bumi adalah antara -70 °C hingga 55 °C bergantung pada iklim setempat. Sehari dibagi menjadi 24 jam dan setahun di bumi sama dengan 365,2425 hari. Bumi mempunyai massa seberat 59.760 miliar ton, dengan luas permukaan 510 juta kilometer persegi. Berat jenis Bumi (sekitar 5.500 kilogram per meter kubik) digunakan sebagai unit perbandingan berat jenis planet yang lain, dengan berat jenis Bumi dipatok sebagai 1.

Kerak bumi lebih tipis di dasar laut yaitu sekitar 5 kilometer. Kerak bumi terbagi kepada beberapa bagian dan bergerak melalui pergerakan tektonik lempeng (teori Continental Drift) yang menghasilkan gempa bumi. Titik tertinggi di permukaan bumi adalah gunung Everest setinggi 8.848 meter dan titik terdalam adalah palung Mariana di samudra Pasifik dengan kedalaman 10.924 meter. Danau terdalam adalah Danau Baikal dengan kedalaman 1.637 meter, sedangkan danau terbesar adalah Laut Kaspia dengan luas 394.299 km2.

D. Planet Mars
  
Mars merupakan planet luar (eksterior planet) yang paling dekat ke bumi. Planet ini tampak sangat jelas dari bumi setiap 2 tahun 2 bulan sekali yaitu pada kedudukan oposisi. Sebab saat itu jaraknya hanya sekitar 56 juta km dari bumi, sehingga merupakan satu-satunya planet yang bagian permukaannya dapat diamati dari bumi dengan mempergunakan teleskop, sedangkan planet lain terlalu sulit diamati karena diselubungi oleh gas berupa awan tebal selain jaraknya yang terlalu jauh.

Di planet Mars, terdapat sebuah fitur unik di daerah Cydonia Mensae. Fitur ini merupakan sebuah perbukitan yang bila dilihat dari atas nampak sebagai sebuah wajah manusia. Banyak orang yang menganggapnya sebagai sebuah bukti dari peradaban yang telah lama musnah di Mars, walaupun di masa kini, telah terbukti bahwa fitur tersebut hanyalah sebuah kenampakan alam biasa.

Berdasarkan pengamatan orbit dan pemeriksaan terhadap kumpulan meteorit Mars, permukaan Mars terdiri dari basalt. Beberapa bukti menunjukkan bahwa sebagian permukaan Mars memunyai silika yang lebih kaya daripada basalt biasa, dan mungkin mirip dengan batu-batu andesitik di Bumi; namun, hasil-hasil pengamatan tersebut juga dapat dijelaskan dengan kaca silika. Sebagian besar permukaan Mars dilapisi oleh debu besi (III) oksida yang memberinya kenampakan merah.

Keadaan di Mars paling mirip dengan bumi, sehingga memungkinkan terdapatnya kehidupan. Karena itu, para astronom lebih banyak menghabiskan waktu mempelajari Mars daripada planet lain. Jarak rata-rata ke Matahari sekitar 228 juta km, periode revolusinya sekitar 687 hari, sedangkan periode rotasi sekitar 24 jam 37 menit. Diameter planet sekitar setengah dari diameter bumi (6.790 km), diselimuti lapisan atmosfer yang tipis, dengan suhu udara relatif lebih rendah daripada suhu udara di bumi. Planet Mars mempunyai dua satelit alam, yakni Phobos dan Deimos.

E. Planet Jupiter

Jupiter merupakan planet terbesar di tata surya, diameter sekitar 142.600 km, terdiri atas materi dengan tingkat kerapatannya rendah, terutama hidrogen dan helium. Jarak rata-ratanya ke matahari sekitar 778 juta km, berotasi pada sumbunya dengan sangat cepat yakni sekitar 9 jam 50 menit, sedangkan periode revolusinya sekitar 11,9 tahun. Planet Jupiter mempunyai satelit alam yang jumlahnya paling banyak yaitu sekitar 13 satelit, di antaranya terdapat beberapa satelit yang ukurannya besar yaitu Ganimedes, Calisto, Galilea, Io dan Europa.

Yupiter memiliki cincin yang sangat tipis ,berwarna hampir sama dengan atmosfernya dan sedikit memantulkan cahaya matahari. Cincin Yupiter terbentuk atas materi yang gelap kemerah-merahan. Materi pembentuknya bukanlah dari es seperti Saturnus melainkan ialah batuan dan pecahan-pecahan debu. Setelah diteliti, cincin Yupiter merupakan hasil dari gagal terbentuknya satelit Yupiter.


F. Planet Saturnus

Saturnus merupakan planet terbesar ke dua setelah Jupiter, diameternya sekitar 120.200 km, periode rotasinya sekitar 10 jam 14 menit, dan revolusinya sekitar 29,5 tahun. Planet ini mempunyai tiga cincin tipis yang arahnya selalu sejajar dengan ekuatornya, yaitu Cincin Luar (diameter 273.600 km), Cincin Tengah (diameter 152.000 km), dan Cincin Dalam (diameter 160.000 km). Antara Cincin Dalam dengan permukaan Saturnus dipisahkan oleh ruang kosong yang berjarak sekitar 11.265 km. Planet Saturnus mempunyai atmosfer sangat rapat terdiri atas hidrogen, helium, metana, dan amoniak. Planet Saturnus mempunyai satelit alam berjumlah sekitar 11 satelit, diantaranya Titan, Rhea, Thetys, dan Dione.

Saturnus memiliki kerapatan yang rendah karena sebagian besar zat penyusunnya berupa gas dan cairan. Inti Saturnus diperkirakan terdiri dari batuan padat dengan atmosfer tersusun atas gas amonia dan metana, hal ini tidak memungkinkan adanya kehidupan di Saturnus.
Cincin Saturnus sangat unik, terdiri beribu-ribu cincin yang mengelilingi planet ini. Bahan pembentuk cincin ini masih belum diketahui. Para ilmuwan berpendapat, cincin itu tidak mungkin terbuat dari lempengan padat karena akan hancur oleh gaya sentrifugal. Namun, tidak mungkin juga terbuat dari zat cair karena gaya sentrifugal akan mengakibatkan timbulnya gelombang. Jadi, sejauh ini, diperkirakan yang paling mungkin membentuk cincin-cincin itu adalah bongkahan-bongkahan es meteorit.

Hingga 2006, Saturnus diketahui memiliki 56 buah satelit alami. Tujuh di antaranya cukup masif untuk dapat runtuh berbentuk bola di bawah gaya gravitasinya sendiri. Mereka adalah Mimas, Enceladus, Tethys, Dione, Rhea, Titan (Satelit terbesar dengan ukuran lebih besar dari planet Merkurius) dan Iapetus.

G. Planet Uranus

Uranus mempunyai diameter 49.000 km hampir empat kali lipat diameter bumi. Periode revolusinya sekitar 84 tahun, sedangkan rotasinya sekitar 10 jam 49 menit. Berbeda dengan planet lainnya, sumbu rotasi pada planet ini searah dengan arah datangnya sinar matahari, sehingga kutubnya seringkali menghadap ke arah matahari. Atmosfernya dipenuhi hidrogen, helium dan metana. Di luar batas atmosfer, Planet Uranus terdapat lima satelit alam yang mengelilinginya, yaitu Miranda, Ariel, Umbriel, Titania, dan Oberon. Jarak rata-rata ke matahari sekitar 2.870 juta km. Planet inipun merupakan planet raksasa yang sebagian besar massanya berupa gas dan bercincin, ketebalan cincinnya hanya sekitar 1 meter terdiri atas partikel-partikel gas yang sangat tipis dan redup.

Uranus komposisinya sama dengan Neptunus dan keduanya mempunyai komposisi yang berbeda dari raksasa gas yang lebih besar, Jupiter dan Saturn. Karenanya, para astronom kadang-kadang menempatkannya dalam kategori yang berbeda, "raksasa es". Atmosfer Uranus, yang sama dengan Jupiter dan Saturnus karena terutama terdiri dari hidrogen dan helium, mengandung banyak "es" seperti air, amonia dan metana, bersama dengan jejak hidrokarbon. Atmosfernya itu adalah atmofer yang terdingin dalam Tata Surya, dengan suhu terendah 49 K (−224 °C). Atmosfer planet itu punya struktur awan berlapis-lapis dan kompleks dan dianggap bahwa awan terendah terdiri atas air dan lapisan awan teratas diperkirakan terdiri dari metana. Kontras dengan itu, interior Uranus terutama terdiri atas es dan bebatuan.

H. Planet Neptunus

Neptunus merupakan planet superior dengan diameter 50.200 km, letaknya paling jauh dari matahari. Jarak rata-rata ke matahari sekitar 4.497 juta km. Periode revolusinya sekitar 164,8 tahun, sedangkan periode rotasinya sekitar 15 jam 48 menit. Atmosfer Neptunus dipenuhi oleh hidrogen, helium, metana, dan amoniak yang lebih padat dibandingkan dengan Jupiter dan Saturnus. Satelit alam yang beredar mengelilingi Neptunus ada dua, yaitu Triton dan Nereid. Planet Neptunus mempunyai dua cincin utama dan dua cincin redup di bagian dalam yang mempunyai lebar sekitar 15 km.Komposisi penyusun planet ini adalah besi dan unsur berat lainnya. Planet Neptunus memiliki 8 buah satelit, di antaranya Triton, Proteus, Nereid dan Larissa.


I. Pluto

Planet ini sekarang sudah hilang, atau menghilang dari tata surya kita  ...


Mengapa pluto tidak lagi menjadi sebuah planet?


Kita sama-sama tahu kalau planet Pluto sudah tidak lagi menjadi anggota "planet" di sistem tata surya kita,tapi apakah kalian tahu sebabnya?jika kalian belum tahu,silahkan baca artikel di bawah ini...

SEJARAH PLUTO  
Pluto pertama kali ditemukan pada 1930 oleh Clyde W. Tombaugh di Observatorium Lowell di Flagstaff Arizona. Para astronom telah lama meramalkan bahwa akan ada sebuah planet kesembilan di tata surya, yang mereka sebut Planet X.Tombaugh diberi tugas sulit untuk menyelidiki planet kesembilan tersebut.

Setelah setahun pengamatan, Tombaugh akhirnya menemukan sebuah benda di orbit yang mirip dengan kriteria sebuah planet,dan menyatakan bahwa ia telah menemukan Planet X. Karena mereka telah menemukannya, tim dari Observatorium Lowell diizinkan untuk memberi nama planet tersebut. Mereka memberi nama Pluto, nama salah satu dewa romawi dunia bawah.Nama ini disarankan oleh seorang gadis sekolahberumur 11 tahun di Oxford, Inggris.Jadi,jika ada yang beranggapan nama Pluto diambil dari nama anjingnya Miki,maka kalian salah besar.

UKURAN PLUTO
Para astronom tidak yakin tentang massa Pluto hingga ditemukannya bulan terbesar, Charon, pada tahun 1978. Dan dengan mengetahui massa (0,0021 Bumi), mereka dapat lebih akurat mengukur ukurannya. Pengukuran yang paling akurat saat ini didapati ukuran Pluto sekitar 2.400 km (1.500 mil).

KONDISI PLUTO SEKARANG      
Selama beberapa dekade terakhir,penelitian di observatorium telah benar-benar mengubah pemahaman sebelumnya dari Tata Surya. Pluto dan bulan-bulannya sekarang dikenal hanya contoh besar koleksi benda-benda yang disebut Sabuk Kuiper. Wilayah ini membentang dari orbit Neptunus ke 55 unit astronomi (55 kali jarak Bumi ke Matahari).Para astronom memperkirakan bahwa setidaknya ada 70.000 benda es, dengan komposisi yang sama seperti Pluto, yang memanjang hingga 100 km di seluruh atau lebih di Sabuk Kuiper. Dan menurut aturan baru, Pluto bukanlah sebuah planet. Hanya bagian dari sabuk kupier itu sendiri. 

LALU APA SEBABNYA?
Inilah masalahnya, Para astronom telah menemukan objek yang lebih kecil dari Pluto di Sabuk Kuiper.Obyek yang bernama 2005 FY9, ditemukan oleh astronom Caltech Mike Brown dan timnya hanya sedikit lebih kecil dari Pluto. Dan ada beberapa lainnya objek Sabuk Kuiper dalam klasifikasi yang sama.Para astronom menyadari,bahwa hanya masalah waktu sebelum sebuah objek yang lebih besar dari Pluto ditemukan di Sabuk Kuiper.

Dan akhirnya,para astronom telah menemukan objek tersebut,letaknya lebih jauh dari orbit Pluto, yang ukuranya mungkin sama dengan Pluto atau bahkan lebih besar. Secara resmi diberi nama 2003 UB313, objek itu kemudian dinamakan Eris.Ukuran Eris sekitar 2.600 km (1.600 mil)di seluruh permukaanya,ia juga memiliki massa sekitar 25% lebih besar dari Pluto.Eris Terbuat dari campuran es / bebeatuan yang ukuranya sama dengan Pluto, konsep bahwa kita memiliki sembilan planet di tata surya mulai berantakan. Apakah Eris itu, planet atau Kuiper Belt Object,lalu bagaimana dengan status Pluto sebagai planet kesembilan?Para astronom memutuskan mereka akan membuat keputusan akhir tentang definisi planet di Majelis Umum XXVIth dan diikuti oleh Uni Astronomi Internasional, yang diselenggarakan dari 14 Agustus - 25 Agustus 2006 di Praha, Republik Ceko.

KEPUTUSAN AKHIR
Hasil dari Konferensi tersebut,akhirnya para astronom memilih keputusan yang cukup kontroversial,yakni menurunkan jabatan Pluto (dan Eris), sampai dengan klasifikasi yang baru dibuat,yaitu"Planet kerdil".Perlu diketahui,Untuk menentukan suatu objek layak disebut planet atau tidak,harus memenuhi tiga persyaratan yang ditentukan oleh IAU(International Astronomical Union).Yang pertama,Objek tersebut harus berada di sekitar orbit Matahari.Jadi mungkin Pluto adalah sebuah planet.Lalu yang kedua ,harus memiliki gravitasi cukup untuk menarik tekstur permukanya sendiri menjadi bentuk bola.Dan yang terakhir,objek tersebut haruslah bisa menjadi gravitasi yang dominan dibanding benda-benda lain di sekitarnya orbitnya,yang berarti tidak boleh ada benda lain yang ukuranya sebanding dengan objek tersebut.Sebagai perbandingan,massa Pluto hanya 0,07 kali massa benda lain di orbitnya.Sedangkan Bumi, memiliki 1,7 juta kali massa benda lain di orbitnya,jadi pluto tidak memenuhui syarat tersebut,sehingga tidak layak disebut planet.

Setiap objek yang tidak memenuhi 3 kriteria tadi dianggap sebagai planet kerdil.Tetapi,meskipun Pluto dinobatkan sebagai planet kerdil,tetap saja Pluto masih menarik untuk dipelajari.Karena itulah NASA meluncurkan pesawat angkasa "New Horizons" untuk dikirim ke Pluto. New Horizons akan mencapai Pluto pada bulan Juli 2015, dan menangkap gambar close-up pertama dari permukaan planet (kerdil) itu. Jadi kita tunggu saja nanti di tahun 2015.